Complex Analysis Solutions *

Final Semester 2014-2015

Problem 1

(i)

Let g be the primitive of f in \mathbb{C}. Then for any closed loop γ we have

$$
\int_{\gamma} f(z) d(z)=\int_{\gamma} d g(z)=0 .
$$

By choosing γ to be unit circle, we have the l.h.s. of to be $2 \pi i \neq 0$. Therefore f does not have any primitive in \mathbb{C}.
(ii)

Because f is holomorphic on $B_{1}(0), f$ is also continuous on $B_{1}(0)$. Therefore $f(0)=\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=0$. But we know that the zero set of any nontrivial holomorphic function is discrete. Therefore $f(z)=0$ for any $z \in B_{1}(0)$.
(iii)

Because $|f(z)|=e^{|z|}$, f does not vanish in $B_{1}(0)$. The function $g=\frac{1}{f}$ is well defined and holomorphic. But from the given relation g attains maximum at $z=0$, which contradicts the maximum modulus principle. Therefor the is no such f.

Problem 2

Applying the Schwarz's lemma to f, we have that $|f(z)| \leq|z|$. Consider the function f^{\prime} on the set $B_{\frac{1}{2}}(0)$. From the Cauchy integral formula we get

$$
f^{\prime}\left(z_{0}\right)=\int_{\left|z-z_{0}\right|=\left|z_{0}\right|} \frac{f(z)}{z-z_{0}} d z
$$

for any $z_{0} \in B_{\frac{1}{2}}(0)$. Therefore, using the fact that the maximum value of $|f|$ on the given contour is at most $2\left|z_{0}\right|$, we have $|f(z)| \leq 2|z|$ for any $z \in B_{\frac{1}{2}}(0)$. Define the function $g(z)=f^{\prime}\left(\frac{z}{2}\right)$. The function g satisfies the hypothesis of Schwarz's lemma. Therefore from Schwarz's lemma we have $\left|g^{\prime}(0)\right| \leq 1$, which inturn gives the result $\left|f^{\prime \prime}(0)\right| \leq 2$.

[^0]
Problem 3

Define the function $g(z)=\frac{f(e z)}{e}$. The function $g: B_{1}(0) \rightarrow B_{\frac{1}{e}}(0)$ and every fixed point of g corresponds to a fixed point of f and vice-versa. We will show that g cannot have two fixed points. If so, let a and b be the two fixed points of g. Denote the map $\phi_{\alpha}(z)=\frac{z-\alpha}{1-\bar{\alpha} z}$. Then the function $\phi_{a} \circ g \circ \phi_{a}^{-1}$ maps unit disk into unit disk and vanishes at 0 . The point $\phi_{a}(b)$ is also a fixed point of $\phi_{a} \circ g \circ \phi_{a}^{-1}$. Therefore invoking Schwarz's lemma we obtain that the map $\phi_{a} \circ g \circ \phi_{a}^{-1}$ is an identity map, which in turn yields that g is identity. But g cannot be an identity map because the range of g is contained in $B_{\frac{1}{e}}(0)$. Hence there can only be atmost one fixed point of g.

Applying Rouche's theorem for the functions $g-I d$ and $I d$ (Id- denotes identity function), we have $|g(z)-z-(-z)|=|g(z)|<|z|$, whenever $|z|>\frac{1}{e}$. Therefore $g-I d$ and $I d$ have same number of zeros in $B_{\frac{1}{e}}(0)$. Hence g has exactly one fixed point.

Problem 4

Define the function $g=\frac{f}{r}$ which is holomorphic on $\mathbb{C} \backslash\left\{\alpha_{n}\right\}_{n \geq 1}$. Then it satisfies $|g| \leq 1$. Because g is bounded, we can extend g to the whole complex plane holomorphically (using Cauchy integral formula) and satisfying $|g| \leq 1$. Therefore g is bounded entire function and hence has to be constant c. Hence $f=c r$.

Problem 5

Consider the function $f:\{z: \Im(z)>0\} \rightarrow B_{1}(0)$ defined by $f(z)=\frac{z-i}{z+i}$. This function is a bijection whose inverse is given by $f^{-1}(z)=-i \frac{w+1}{w-1}$. As the functions f and f^{-1} are rational and does not have poles in their respective domains, they are holomorphic. Therefore the upper half plane and unit disc are bi-holomorphically equivalent.

Problem 6

Consider the contour ($\gamma_{n}=\gamma_{1, n} \cup \gamma_{2, n}$) defined by the following two curves. $\gamma_{1, n}=\{z:-n \geq \operatorname{Re}(z) \leq n ; \operatorname{Im}(z)=0\}$ and $\gamma_{2, n}=\{z:|z|=n ; \operatorname{Im}(z) \geq 0\}$. For $n \geq 2$, invoking residue theorem, we have

$$
\begin{gather*}
\int_{\gamma_{n, 1}} \frac{1}{1+z^{2}} d \gamma_{n, 1}(z)+\int_{\gamma_{n, 2}} \frac{1}{1+z^{2}} d \gamma_{n, 2}(z)=\int_{\gamma_{n}} \frac{1}{1+z^{2}} d \gamma_{n}(z)=\frac{2 \pi i}{i+i}=\pi \tag{1}\\
\lim _{n \rightarrow \infty}\left|\int_{\gamma_{n, 2}} \frac{1}{1+z^{2}} d \gamma_{n, 2}(z)\right| \leq \lim _{n \rightarrow \infty} \int_{\gamma_{n, 2}}\left|\frac{1}{(z-i)(z+i)}\right| d \gamma_{n, 2}(z) \leq \lim _{n \rightarrow \infty} \frac{\pi n}{n^{2}-1}=0 \tag{2}
\end{gather*}
$$

Taking limits in (1) on both the sides and using (2) we have

$$
\lim _{n \rightarrow \infty} \int_{\gamma_{n, 1}} \frac{1}{1+z^{2}} d \gamma_{n, 2}(z)=\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\pi
$$

Problem 7

Recall the fact that the image of any neighborhood of essential singularity, under the mapping of f, is dense in \mathbb{C}. Given that $\operatorname{Re}(f) \geq 0$ on $P_{1}(0)$, therefore f cannot have essential singularity at 0 . If f has a pole of order m at 0 , then in a neighborhood of $0, f$ can be expanded as

$$
f(z)=a_{m} z^{-m}+a_{m-1} z^{-(m-1)}+\ldots
$$

We can choose z small enough such that $a_{m} z^{-m}$ is a purely negative real number and dominates all other terms together in modulus. For this choice of z, $\operatorname{Re}(f(z))<0$ and contradicts the given assumption on f. Therefore f has a removable singularity at 0 .

[^0]: *Send an email to tulasi.math@gmail.com for any clarifications or to report any errors.

